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The scope and character of today’s computing environments are progressively shifting from tra-
ditional, one-on-one client-server interaction to the new cooperative paradigm. It then becomes of
primary importance to provide means of protecting the secrecy of the information, while guaran-
teeing its availability to legitimate clients. Operating online querying services securely on open
networks is very difficult; therefore many enterprises outsource their data center operations to
external application service providers. A promising direction toward prevention of unauthorized
access to outsourced data is represented by encryption. However, data encryption is often supported
for the sole purpose of protecting the data in storage while allowing access to plaintext values by
the server, which decrypts data for query execution.

In this paper, we present a simple yet robust single-server solution for remote querying of
encrypted databases on external servers. Our approach is based on the use of indexing information
attached to the encrypted database, which can be used by the server to select the data to be
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Bramante, 65, 26013 Crema, Italy; email: {ceselli,damiani,decapita,samarati}@dti.unimi.it; Sushil
Jajodia, George Mason University, Fairfax, VA 22030-4444; email: jajodia@gmu.edu; Stefano
Paraboschi, Dipartimento di Ingegneria Gestionale e dell’Informazione, Università di Bergamo,
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returned in response to a query without the need of accessing the plaintext database content. Our
indexes balance the trade-off between efficiency requirements in query execution and protection
requirements due to possible inference attacks exploiting indexing information. We investigate
quantitative measures to model inference exposure and provide some related experimental results.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Relational data-
bases; H.2.7 [Database Management]: Database Administration—Security, integrity, and pro-
tection; H.3.1 [Information Storage and Retrieval]: Content Analysis and Indexing—Indexing
methods; H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—Query
formulation

General Terms: Security, Design

Additional Key Words and Phrases: Cryptography, database service, indexing, inference

1. INTRODUCTION

In most organizations, databases hold a critical concentration of sensitive in-
formation. Ensuring an adequate level of protection to databases’ content is
therefore an essential part of any comprehensive security program. Database
encryption [Davida et al. 1981] is a time-honored technique that introduces an
additional layer to conventional network and application-level security solu-
tions, preventing exposure of sensitive information even if the database server
is compromised. Database encryption prevents unauthorized users, including
intruders breaking into a network, from seeing the sensitive data in databases;
similarly, it allows database administrators to perform their tasks without ac-
cessing sensitive information (e.g., sales or payroll figures) in plaintext. Fur-
thermore, encryption protects data integrity, as possible data tampering can be
recognized and data correctness restored (e.g., by means of backup copies).

While much research has been done on the mutual influence of data and
transmission security on organizations’ overall security strategy [Walton 2002],
the influence of service outsourcing on data security has been less investigated.
Conventional approaches to database encryption have the sole purpose of pro-
tecting the data in storage and assume trust in the server, which decrypts
data for query execution. This assumption is less justified in the new coopera-
tive paradigm, where multiple Web services cooperate exchanging information
in order to offer a variety of applications. Effective cooperation between Web
services and content providers often requires critical information to be made
continuously available for online querying by other services or final users. To
name but a few, telemedicine applications involve network transfers of medical
data, location-based services require availability of users’ cartographic coordi-
nates, while e-business decision support systems often need to access sensitive
information such as credit ratings.

Customers, partners, regulatory agencies, and even suppliers now routinely
need access to information originally intended to be stored deep within compa-
nies’ information systems. Operating online querying services reliably on open
networks is very difficult. For this reason, many enterprises prefer to outsource
their data center operations to external application providers. Remote storage
technologies (e.g., storage area networks [Ward et al. 2002]) are used to place
sensitive and even critical company information at a provider’s site, on systems
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Fig. 1. Overall scenario.

whose architecture is specifically designed for database publishing and access
is controlled by the provider itself.

As a consequence of this trend toward data outsourcing, highly sensitive
data are now stored on systems run in locations that are not under the data
owner’s control, such as leased space and untrusted partners’ sites. Therefore,
data confidentiality and even integrity can be put at risk by outsourcing data
storage and management.

The requirement that the database content remains secret to the database
server itself introduces several new interesting challenges. Conventional en-
crypted DBMSs assume trust in the DBMS, which can then decrypt data for
query execution. In an outsourced environment scenario, such an assumption
is not applicable anymore as the party to which the service is being outsourced
cannot be granted full access to the plaintext data. Since confidentiality de-
mands that data decryption must be possible only at the client side, techniques
are needed enabling servers to execute queries directly on encrypted data. A
first proposal toward the solution of this problem was presented in Hacigümüs
et al. [2002a], where the authors proposed storing, together with the encrypted
database, additional indexing information. Such indexes can be used by the
DBMS to select the data to return in response to a query. The basic idea is
illustrated in Figure 1. Each plaintext query (1) is mapped onto a corresponding
query (2) on the indexing information and executed in that form at the server
side. The server returns the encrypted result (3), which is then decrypted at
the trusted front end. If the mapping between indexing information and the
original database plaintext is not exact, an additional query (4) may need to be
executed to eliminate spurious tuples that do not belong to the result set.

A major challenge in this scenario is how to compute and represent indexing
information. Two conflicting requirements challenge the solution of this prob-
lem: on one side, the indexing information should be related with the data well
enough to provide for an effective query execution mechanism; on the other
side, the relationship between indexes and data should not open the door to
inference and linking attacks that can compromise the protection granted by
encryption [Denning 1982]. The indexing information provided in Hacigümüs
et al. [2002a], based on using as indexes names of sets containing value inter-
vals, proves limited in this respect (see Section 2).

In this paper, we provide an approach to indexing encrypted data constructed
with efficiency and confidentiality in mind, providing a balance between these
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two requirements. A trade-off can be observed between the degree of protection
that our family of techniques is able to offer, and a corresponding decrease in
efficiency that can be produced by the use of these protection measures. Then, a
general motivation of our investigation is an assessment of the degree of protec-
tion provided by different indexing techniques (each of which affects efficiency
in query execution in a different way). It turns out that the data protection
(and its relation with efficiency) cannot be synthesized by simple mathematical
formulae. Instead, the paper proposes a family of abstract models for solving
the inference problem using algorithmic techniques. Our analysis supports a
sequence of experiments showing the behavior of different indexing solutions.

The contributions of this paper can be summarized as follows. First, we pro-
pose an approach to indexing encrypted data based on direct encryption and
hashing. Second, we define a suite of graph theoretical models supporting quan-
titative evaluations of the inference exposure of the two approaches. Third, we
present the result of a set of experiments that quantify the protection increase
that hashing is able to provide.

2. RELATED WORK

Database encryption has been proposed since long as a fundamental tool
for providing strong security for “data at rest.” Thanks to recent advances
in processors’ capabilities and to the development of fast encryption tech-
niques, the notion of encrypted database is nowadays well recognized,
and several commercial products reached the market. However, develop-
ing a sound security strategy including database encryption still involves
many open issues. Key management and security are of paramount im-
portance in any encryption-based system and were therefore among the
first issues to be investigated in the framework of database encryption
[Davida et al. 1981; Hacigümüs and Mehrotra 2004]. Later, techniques have
been developed aimed at efficiently querying encrypted databases [Song
et al. 2000], some of them related to parallel efforts by the text retrieval
community [Klein et al. 1989] for executing hidden queries, that is, queries
where only the ciphertext of the query arguments is made available to the
DBMS. On the other hand, architectural research investigated optimal sharing
of the encryption burden between secure storage, communication channels
and the application where the data originates [Jensen 2000], looking for
a convenient trade-off between data security and application performance.
Recently, much interest was devoted to secure handling of database encryption
in distributed, Web-based execution scenarios, where data management is
outsourced to external services [Bouganim and Pucheral 2002]. The main
purpose of this line of research is to find techniques for delegating data storage
and the execution of queries to external servers while preserving efficiency.
The index of range technique proposed in Hacigümüs et al. [2002a] in the
framework of a database-service-provider architecture relies on partitioning
the domains of attributes in client tables into sets of intervals. The value of
each remote table attribute is stored as the index countersigning the interval
to which the corresponding plain value belongs. Indexes may be ordered or
not, and the intervals may be chosen so that they have all the same length, or
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are associated with the same number of tuples. This representation supports
efficient evaluation on the remote server of both equality and range predicates;
however, it makes it awkward to manage the correspondence between intervals
and the actual values present in the database. In Damiani et al. [2004], we
illustrate an approach for obfuscating data that guarantees protection of
data while allowing the execution of both equality and range queries on the
obfuscated data. Privacy homomorphism has also been proposed for allowing
the execution of aggregation queries over encrypted data [Hacigümüs et al.
2004]. The proposed approach is based on the technique introduced by Rivest
et al. [1978] according to which an encrypted function E() is homomorphic if
given E(x) and E( y), one can obtain E(xθ y) without decrypting x and y for
some operation θ . In this case, the server stores an encrypted table with an
index for each aggregation attribute (i.e., an attribute on which the aggregate
operator can be applied) obtained from the original attribute with privacy ho-
momorphism. An operation on an aggregation attribute can then be evaluated
by computing the aggregation at the server site and by decrypting the result at
the client side. Other work on privacy homomorphism illustrates techniques
for performing arithmetic operations (+, −, ×, ÷) on encrypted data and does
not consider comparison operations [Boyens and Günter 2003; Domingo-Ferrer
1996; Domingo-Ferrer and Herrera-Joanconmartı́ 1998]. In Agrawal et al.
[2004], an order preserving encryption schema (OPES) is presented to support
equality and range queries as well as max, min, and count queries over
encrypted data. The basic idea is that given a target distribution, the plaintext
values are transformed by using an order-preserving transformation and in
such a way that the transformed values follow the target distribution. While
our technique is applicable to any kind of data and robust against different
class of attacks (i.e., known-plaintext attacks and ciphertext-only attacks),
OPES is only applicable to numeric data and is secure against ciphertext-only
attacks. A distinct, though related solution is proposed in Bouganim and
Pucheral [2002], where smart cards are used for key management.

On a different line of related work, we note that the protection/exposure
given by hashing can resemble the generalization approach for microdata
protection; and correspondingly inference attacks exploiting it can resemble
record linkage techniques examined in that context [Samarati 2001]. However,
the two problems turn out to be quite different: while generalization replaces
values in a given interval with a single identifier and preserves some informa-
tion on plaintext values, hashing replaces uncorrelated values with a single
bucket identifier.

Also, it is important to note that the problem we consider differs from ex-
isting approaches protecting encrypted data, which investigated solutions for
the private information retrieval problem (protecting the query search criteria,
that is, the information the user is looking for) or for the problem of limiting
the amount of data that users can acquire.

3. DATA ORGANIZATION

We consider a relational DBMS where data are organized in tables, where the
underlined attribute represents the key of the table (e.g., see table ACCOUNTS in
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Fig. 2. A plaintext relation (a) and the corresponding encrypted relations with direct encryption
(b) and hashing (c).

Figure 2). In principle, different granularity choices are possible for database
encryption, such as encrypting at the level of whole tables, columns (i.e., at-
tributes), rows (i.e., tuples), and cells (i.e., elements). Encrypting at the level of
tables (columns resp.) implies that the whole table (column resp.) involved in
a query should always be returned, providing therefore no means for selecting
the data of interest and leaving to the client the burden of query execution on
a possibly huge amount of data. On the other hand, supporting encryption at
the finest granularity of single cells is also inapplicable as it would severely af-
fect performance, since the client would be required to execute a potentially
very large number of decrypt operations to interpret the results of queries
[Hacigümüs et al. 2002b]. In the same line as Hacigümüs et al. [2002a], we
assume encryption to be performed at the tuple level. To provide the server
with the ability to select a set of tuples to be returned in response to a query, we
associate with each encrypted tuple a number of indexing attributes. An index
can be associated with each attribute in the original table on which conditions
need to be evaluated in the execution of queries.

Each plaintext table is represented as a table with an attribute for the en-
crypted tuple and as many attributes as indexes to be supported. More specifi-
cally, each plaintext tuple t(A1, . . . , An) is mapped onto a tuple t ′(Tk , I1, . . . , Im),
where m ≤ n, t ′[Tk] = Ek(t), with Ek() denoting an invertible encryption
function over key k, and each Ii corresponds to the index over some Aj .
Figure 2 illustrates an example of a plaintext table ACCOUNTS and the corre-
sponding encrypted/indexed1 table ENC ACCOUNTS1 where Enc tuple contains

1In the remainder of the paper, for the sake of simplicity, we shall designate this table format with
the term encrypted.
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the encrypted triples, while IA, IC, and IB are indexes over attributes Account,
Customer, and Balance, respectively. For the sake of readability, we use easy-to-
understand names for the attributes and table names in the encrypted schema
and Greek letters as index values. Of course, in a real example, attributes and
table names would be obfuscated and actual values for indexes would be the
results of an invertible encryption function and would then look like the ones
reported for the encrypted tuples in Figure 2.

Let us now discuss how to represent indexing information.
An approach providing the same fine-grained selection capability as using

plaintext values is to use their corresponding encrypted values as indexes.
Then, for each indexed cell, the outcome of an invertible encryption function
over the cell value is used, that is, t[Ii] = Ek(t[Ai]). Query execution is simple:
each plaintext query can be translated into a corresponding query on encrypted
data by simply applying the encryption function to the values mentioned in the
query. For instance, with reference to the tables in Figure 2, query “SELECT * FROM

ACCOUNTS WHERE CUSTOMER = Alice” would be translated into “SELECT ENC TUPLE

FROM ENC ACCOUNTS1 WHERE IC = α.” This solution has the advantage of preserv-
ing plaintext distinguishability, together with precision and efficiency in query
execution, as all the tuples returned belong to the query set of the original
query. In particular, the solution is convenient for queries involving equality
constraints over the attributes. Also, since equality predicates are almost al-
ways used in the computation of joins, a join between two tables that use the
same encryption function on the join attribute can be computed precisely.

As a drawback, however, in this approach encrypted values reproduce exactly
the plaintext values distribution with respect to values’ cardinality (i.e., the
number of distinct values of the attribute) and frequencies. This opens the door
to frequency-based attacks (see next section).

An alternative approach to counter these attacks is to use as index the result
of a secure hash function over the attribute values rather than straightforwardly
encrypting the attributes; this way, the attribute values’ distribution can be
flattened by the hash function. A flexible characteristic of a hash function is the
cardinality of its codomain B, which allows us to adapt it to the granularity
of the represented data. When B is small compared with the cardinality of the
attribute, the hash function can be interpreted as a mechanism that distributes
tuples in B buckets; a good hash function (and a secure hash has to be good)
distributes uniformly the values in the buckets. For instance, the ACCOUNTS

table in Figure 2 can be indexed by considering three buckets (α, β, δ) for IC and
three buckets (µ, κ, θ ) for IB. The encrypted relation ENC ACCOUNTS2 in Figure 2
can then be obtained when Alice and Chris are both mapped onto α, Donna and
Elvis are both mapped onto β, while Bob and Fred are both mapped onto δ. Also,
200 and 400 are both mapped to κ, 100 is mapped onto µ, and 300 is mapped
onto θ . With respect to direct encryption, hash-based indexing provides more
protection as different plaintext values are mapped onto the same index.

Using attribute hashes in remote tables permits an efficient evaluation of
equality predicates within the remote server. If the same hash function is used
to compute values of two attributes of different tables on which the equality
predicate must be evaluated in the context of a join query, the join query itself
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can be efficiently computed at the remote server simply by combining all of the
pairs of tuples characterized by the same hash value.

When direct encryption is used for indexing, the results returned by a query
on the encrypted table is exactly the query set of the original query. The only
task left for the front end is then decryption. By contrast, when hashing is used,
the results will often include spurious tuples (all those belonging to the same
bucket of the index) that will have to be removed by the front end receiving
them. In this case, the additional burden on the front end consists in purging
from the result returned by the remote server all the pairs of tuples that, once
brought back in plaintext form, do not satisfy the equality predicate on the join
attribute. Intuitively, every query Q of the front end corresponds to a query
Q ′ to be passed onto the server-side DBMS for execution over the encrypted
database and a query Q ′′ to be executed at the front end on the results of Q ′. As
an example, consider the encrypted table ENC ACCOUNTS2 in Figure 2 and the
user query Q “SELECT BALANCE FROM ACCOUNTS WHERE CUSTOMER=Bob.” The query
is translated as Q ′ = “SELECT ENC TUPLE FROM ENC ACCOUNTS2 WHERE IC = δ”
for execution by the server-side DBMS which returns the third and seventh
encrypted tuples. The trusted front end then decrypts the result obtaining the
third and seventh tuples of the original table ACCOUNTS and re-executes on
them the original query, eliminating the seventh one (whose presence was due
to index collision).2

Incidentally, we observe that the trusted front end is a relatively complex
piece of software, as it has to integrate most of the functionalities of a relational
engine.

4. INFERENCE EXPOSURE

Being closely related to plaintext data, indexing information could open the door
to inferences that exploit data analysis techniques to reconstruct the database
content and/or break the indexing code. It is important to be able to evaluate
quantitatively the level of exposure associated with the publication of certain
indexes and therefore to determine the proper balance between index efficiency
and protection.

There are different ways in which inference attacks could be modeled. In this
paper, we consider two cases that differ in the assumption about the attacker’s
prior knowledge. In common, the two attack models have the fact that the
attacker has complete access to the encrypted relations.

In the first case, which we call Freq + DBK scenario, we assume the attacker
is aware of the distribution of plaintext values (Freq) in the original database
in addition to knowing the encrypted database (DBK). This knowledge can be
exact (e.g., in a database storing accounting information, the account holder
list can be fully known) or approximate (e.g., the ZIP codes of the geographical
areas of the account holders can be estimated based on population data). For
the sake of simplicity, in the following we will assume exact knowledge (which
represents the worst case scenario). In this scenario, there are two possible

2We refer the reader to Damiani et al. [2003] for an illustration of the working of the query trans-
lation and the query evaluation processes.
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Fig. 3. Synoptic guide to the exposure evaluation on the four attack scenarios.

inferences that the attacker can draw: (i) the plaintext content of the database,
that is, determine the existence of a certain tuple (or association of values) in
the original database, and/or (ii) the indexing function, that is, determine the
correspondence between plaintext values and indexes.

In the second case, which we call DB+DBK scenario, we assume the attacker
has both the encrypted (DBK ) and the plaintext database (DB). In this case the
attacker aims at breaking the indexing function, thus establishing the correla-
tion between plaintext data and the corresponding index values. The hosting
server will then be able to decode additional encrypted tuples that are inserted
into the database. This attack may, for example, occur when the database owner
switches from a remote plaintext database to the use of encryption.

The combination of the two attack models and the two encryption solutions
gives us the four different scenarios illustrated in Figure 3, which will be inves-
tigated in subsequent sections, and for which we will propose abstract models
and algorithmic solutions, using them in the experiments to evaluate exposure
to inference.

5. FREQ+DBK WITH DIRECT ENCRYPTION

To illustrate this scenario, let us consider the example in Figure 2. The at-
tacker knows the encrypted table ENC ACCOUNTS1; also, she knows that all val-
ues for attribute Account have only one occurrence, and she knows the values
(and their occurrences) appearing independently in attributes Customer and
Balance, namely,

Customer = {Alice, Alice, Bob, Chris, Donna, Elvis, Fred}
Balance = {100, 200, 200, 200, 300, 300, 400}.

Although the attacker does not know which index corresponds to which plain-
text attribute, she can determine the actual correspondence by comparing their
occurrence profiles. In particular, she can determine that IA, IC, and IB corre-
spond to attributes Account, Customer and Balance, respectively. The attacker
can then infer that κ represents value 200 and index α represents value Alice
(indexing inference). She can also infer that the plaintext table contains a tu-
ple associating values Alice and 200 (association inference). The other occur-
rence of the index value corresponding to Alice (i.e., α) is associated with a
balance other than 200. Since there are only three other possible values, the
probability of guessing it right is 1/3. In other terms, the probability of each
association depends on the combination of occurrences of its values.

Intuitively, the basic protection from inference in the encrypted table is
that values with the same number of occurrences are indistinguishable to the
attacker. For instance, all customers but Alice are indistinguishable from one
another, as well as all amounts but 200. By contrast, Alice and 200 stand out
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being, respectively, the only customer appearing twice and the only balance
appearing three times.

The exposure of an encrypted relation to indexing inference can then be
thought of in terms of an equivalence relation where indexes (and plaintext
values) with the same number of occurrences belong to the same equivalence
class. For instance, denoting each equivalence class with a dot notation showing
the attribute name and its number of occurrences (e.g., class A.1 contains all
the values of attribute A that occur once), we obtain

A.1 = {π, ', ξ, ), ς, +, τ } = {Acc1, Acc2, Acc3, Acc4, Acc5, Acc6, Acc7}
C.1 = {β, γ , δ, ε, φ} = {Bob, Chris, Donna, Elvis, Fred}
C.2 = {α} = {Alice}
B.1 = {µ, θ} = {100, 400} B.2 = {η} = {300} B.3 = {κ} = {200}.

The quotient of the encrypted table with respect to the equivalence relation
defined above is the following:

QUOTIENT TABLE

qtA qtC qtB
A.1 C.2 B.1
A.1 C.2 B.3
A.1 C.1 B.2
A.1 C.1 B.3
A.1 C.1 B.1
A.1 C.1 B.3
A.1 C.1 B.2

IC TABLE

icA icC icB
1/7 1 1/2
1/7 1 1
1/7 1/5 1
1/7 1/5 1
1/7 1/5 1/2
1/7 1/5 1
1/7 1/5 1

The exposure of the encrypted table to inference attacks can then be eval-
uated by looking at the distinguishable characteristics in the quotient table.
In particular, the association 〈Alice,200〉 (and its correspondence 〈α, κ〉) can
be spotted with certainty being composed by two singleton equivalence classes
(C.2 and B.3). For the other values, probabilistic considerations can be made by
looking at the IC table, that is, the table of the inverse of the cardinalities of the
equivalence classes. In fact, the probability of disclosing a specific association
is the product of the inverses of the cardinalities. The exposure of the whole
relation (or projection of it) can then be estimated as the average exposure of
each tuple in it.

We chose the average because it is a simple operator that best represents the
intuition on the degree of exposure that characterizes a database; an alternative
would be the use of the maximum exposure of a database tuple as the overall
exposure index, but this choice would present a poor behavior and would often
produce high (= 1) exposure values, in most cases due to the presence, among a
multitude of unrecognizable values, of a single value characterized by a unique
cardinality. In the paper, we always use the average to compute the overall
database exposure from the exposure of single values.

Formally, we can write the exposure coefficient E associated with an encrypted
table with inverse cardinality table IC as

E = 1
n

n∑

i=1

k∏

j=1

ICi, j . (1)
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Fig. 4. Problem 1 for attribute Customer and table ACCOUNTS: the correct solution (b), and an
incorrect solution (c)

Here, i ranges over the tuples while j ranges over the columns.
With reference to our example, we have a value of E = 1

7 · 12
35 for the protection

of the whole relation, and a value of 1
7 · 12

5 for the pair 〈Customer, Balance〉.
Note how a long-tailed distribution of values (i.e., distributions composed of

many values having few occurrences) can decrease the exposure to association
attacks. This reflects the fact that while the attacker has information on many
values, they all fall into the same equivalence class resulting indistinguishable
from one another.

Since each index value corresponds to a single plaintext one, the exposure
computed above may be regarded as a lower bound to vulnerability to associa-
tion inference.

6. FREQ+DBK WITH HASHING

As we already noticed, collisions due to hashing increase protection from infer-
ence. For a simple query using a hash value for selection, the average increase
in the result size is equal to cf (collision factor), that is, the number of distinct
attribute values that on average collide on the same hash value. If the query
uses the index to evaluate a join between two tables, the increase in the query
size would be cf 2.

For the sake of simplicity, in the following, we consider examples related to
attributes taken individually, that is, focus on breaking (or reducing the uncer-
tainty on) the indexing function. Association inference can then be modeled as
the combination of information obtained from individual attributes.

Breaking the indexing function can be modeled as the problem of finding a
mapping λ from the plaintext values A to indexing values H that satisfies the
constraints given by the attacker’s prior knowledge, which is represented by the
occurrences of each plaintext value and of each hashed one. In the following,
given any value v in a set of possible values V (either plaintext values in the
original table or hash values in the encrypted table), we use count(v) to denote
the number of occurrences of v in the corresponding table. For instance, with
reference to our example, count(Alice) = 2 and count(α) = 3.

Function λ can be represented graphically by a table 2 (see Figure 4(a)), with
plaintext values as rows and hash values as columns and where 2[i, j ] = 1 if
λ(i) = j ; 2[i, j ] = 0 otherwise. For instance, the table in Figure 4(b) illus-
trates the mapping for attribute Customer in our example. The bold numbers
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appearing at the end of each row i and column j represent the attackers knowl-
edge, that is, count(i) and count( j ), respectively. Finding a mapping satisfy-
ing the cardinality constraints on the plaintext/hash values equates to find-
ing different ways to fill this table subject to the constraints. For instance,
Figures 4(b) and (c) illustrate two possible solutions for the table in Fig-
ure 4(a). Note that Figure 4(b) is the correct mapping, which is however indis-
tinguishable, from the attacker’s point of view, from the incorrect mapping in
Figure 4(c).

This case can be stated as finding solutions to the following problem.

Problem 1. Let A and H be the set of plaintext values and hash values,
respectively. Find all the solutions 2 such that

(1) ∀ j ∈ H :
∑

i∈A 2[i, j ] · count(i) = count( j );
(2) ∀i ∈ A:

∑
j∈H 2[i, j ] = 1;

(3) ∀i ∈ A, ∀ j ∈ H : 2[i, j ] ∈ {0, 1}.

The first constraint states that the number of plaintext values mapped to
each hash value must coincide with the number of occurrences of that hash
value. The second and third constraints trivially state that each plaintext value
is mapped to exactly one hash value.

Note that since the attacker has to determine the mapping, a first evalua-
tion of the strength of the encryption could be done by measuring how many
solutions Problem 1 has. Intuitively, if the problem has exactly one solution, the
encryption function is completely exposed to inference. Counting the number
of solutions is, however, not sufficient as different values can be exposed in dif-
ferent ways (e.g., if all solutions have the same mapping for a specific value v,
such a value is completely exposed). For this reason it is important to explicitly
enumerate the solutions, rather than simply counting them.

Problem 1 is a well-known NP-Hard problem addressed in the literature as
the multiple subset sum problem [Caprara et al. 2000]. A few algorithms have
been proposed, but only for the optimization version of the problem [Caprara
et al. 2003].

Evaluating the inference exposure requires then to enumerate all the possi-
ble solutions to Problem 1. Fortunately, we can reduce the number of solutions
to be enumerated by exploiting indistinguishable characteristics of both plain-
text and hash values.

6.1 Reducing the Problem by Exploiting Indistinguishability of Plaintext Values

As already noticed in previous section, from the point of view of the attacker,
plaintext values with the same cardinality are indistinguishable. Therefore,
each instance of Problem 1 has several solutions that differ only for the order in
which plaintext elements with the same number of occurrences are considered.
If two solutions are in such a relationship, we say that they are symmetric. The
number of symmetric solutions grows combinatorially in the size of the plain-
text values. For instance, suppose that there are n plaintext values v1, . . . , vn
with the same number of occurrences in the original table and k possible hash
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Fig. 5. Problem 2 for equivalence classes of attribute Customer in table ACCOUNTS (a): the correct
solution (b), and an incorrect solution (c).

values h1, . . . , hk for them. If there exists a solution to Problem 1 mapping to
each hi a number ni of values in v1, . . . , vn, then each partition of the set of the n
plaintext values in k subsets of cardinality n1, . . . , nk also represents a solution
to Problem 1. The number of these partitions can be expressed as a multino-
mial coefficient

( n
n1,...,nk

)
. For instance, in the correct mapping, the five values of

equivalence class C.1 are partitioned in a subset of one value and two subsets of
two values. Hence, the number of symmetric solutions is

( 5
1,2,2

)
= 5!

(1!·2!·2!) = 30.
Our algorithm exploits this symmetry of the solutions by enumerating only

one solution in each of such a symmetry class. This behavior corresponds to stat-
ing the problem with reference to equivalence classes of plaintext values (like
in the previous section), grouping values with the same number of occurrences.

In the following, we therefore consider a variation of the problem where
matrix 2 has as rows equivalence classes of the plaintext values. For instance,
for attribute Customer of our example, which we abbreviate as C in the following,
there are two equivalence classes:

C.1 = {Bob, Chris, Donna, Elvis, Fred};
C.2 = {Alice}

and the matrix expressing the constraints becomes as illustrated in Figure 5(a).
Note that the number in bold at the end of each row i now corresponds to

the number of elements in equivalence class i, which we denote by |i|. Also, we
denote with count(i) the (equal) number of occurrences of the elements in i. For
instance, for class C.1, |C.1| = 5 and count(C.1) = 1.

The problem of finding a solution, with reference to equivalence classes, is
stated as follows:

Problem 2. Let X and H be the set of equivalence classes of plaintext values
and of the set of hash values, respectively. Find all the solutions 2 such that

(1) ∀ j ∈ H :
∑

i∈A 2[i, j ] · count(i) = count( j );
(2) ∀i ∈ A:

∑
j∈H 2[i, j ] =| i |;

(3) ∀i ∈ A, ∀ j ∈ H : 2[i, j ] ∈ Z+.

The first constraint states that the sum of the occurrences associated with
elements of the equivalence classes mapped to a hash value must coincide with
the number of occurrences of that hash value. The second and third constraints
state that all plaintext values in each equivalence class are mapped to some
hash value.
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Fig. 6. Problem 3 for equivalence classes of attribute Customer in table ACCOUNTS and equivalence
classes of hash values (a): the correct solution (b), and an incorrect solution (c)

6.2 Reducing the Problem by Exploiting Indistinguishability of Hash Values

Following an approach similar to the one used for indistinguishability of plain-
text values, we can exploit symmetry also among hash values. In particular, we
avoid computing all the different combinations that would map different plain-
text values in different hash values which are indistinguishable since they have
the same number of occurrences (e.g., β and δ in our example). Therefore, in-
stead of considering individual hash values we collapse together, in a single
equivalence class, hash values with the same number of occurrences. For our
IC attribute, we have

IC.2 = {β, δ}
IC.3 = {α}.

Intuitively, with reference to the matrix we are now collapsing columns to-
gether. Note however a difference here, since this time we cannot simply col-
lapse multiple columns and consider a single value for them, as this would
correspond to a single hash value with a number of occurrences equal to the
sum of the occurrences of the collapsed columns. Instead, we need to keep track,
within each single column, of the different hash values it combines.

For our example, the matrix of Figure 5(a) would be transformed into the
matrix of Figure 6(a). Note that each cell in the matrix is now a vector. For
the sake of simplicity, with a notational abuse, given a vector j , we now use
count( j ) to denote the vector of the occurrences of the single elements of j . For
instance, count(IC.2) represents now the vector (2, 2).

We then restate the problem as follows.

Problem 3. Let X and Y be the set of equivalence classes of plaintext values
and of hash values, respectively. Find all the solutions 2 such that

(1) ∀ j ∈ Y :
∑

i∈X 2[i, j ] · count(i) = count( j );
(2) ∀i ∈ X :

∑
j∈H

∑
k∈| j | 2[i, j ][k] = |i|;

(3) ∀i ∈ A, ∀ j ∈ H, ∀k = 1, . . . | j | : 2[i, j ][k] ∈ Z+.

The constraints intuitively extend the constraints in Problem 2 taking into
account equivalence classes of hash values.

The exposure coefficient can now be computed by enumerating the different
solutions to Problem 3. Figure 7 illustrates the recursive enumeration algo-
rithm we used in our experiments. Given a statement of Problem 3, our algo-
rithm computes the different solutions 21, . . . , 2n to the problem, starting by
enumerating all the different columns that can appear in a solution by solving
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Fig. 7. Algorithm for computing the different solutions 21, . . . , 2n of Problem 3.

the corresponding subset sum problem. This is done using an adaptation of
Pisinger’s algorithm for the subset sum problem [Pisinger 1995]. Pisinger’s al-
gorithm relies on dynamic programming: the original version runs in pseudo-
polynomial time (i.e., it runs in time polynomial in the dimension of the problem
and the magnitudes of the data, rather than the logarithm of their magni-
tudes [Garey and Johnson 1979]). However, a dominance criterion has to be
removed to obtain all the feasible solutions. Each solution 2m then corresponds
to different combinations of the columns found.
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Once, we have the different solutions, we can evaluate the exposure coeffi-
cient as illustrated in the following subsection.

6.3 Computing the Exposure Coefficient

While Problem 3 has a number of solutions, which we denote as 21, . . . , 2n, only
one corresponds to the correct mapping used for indexing. In the following, we
use 2′ to denote the correct solution in {21, . . . , 2n}.

For each equivalence class i ∈ X and solution 2, let 2[i, ∗] be the part of
the solution of 2 describing the mapping of plaintext values in i (i.e., row i in
matrix 2). For instance, with reference to Figure 6(b), 2[i, ∗] = [(1), (2, 2)].

To evaluate the exposure coefficient E(i), we first introduce the concept of
exposure coefficient for each solution 2, which we denote as E(i, 2[i, ∗]).

We distinguish two separate cases depending on whether the solution is
correct or incorrect with respect to i.

Let us first consider the case where 2 is the (unique) correct mapping 2′ .
Here, the uncertainty remaining for the attacker is only due to the cardinality
of the equivalence classes for both the plaintext values and for the hash values.
To measure this uncertainty, we first define the set of potential equivalence
classes Pot eq(i) of hash values to which values of i could be mapped, that is,
for which there is at least a nonzero value in a cell. Formally,

Pot eq(i) =
{

j |
∑

k
2[i, j ][k] > 0

}

.

In our example, Pot eq(C.1) = {IC.2, IC.3} while Pot eq(C.2) = {IC.3}.
Then, for each individual value in i, the number of potential mappings Pot(i)

can be computed by adding up the cardinality of all equivalence classes of hash
values j in Pot eq(i), that is, the ones in which it could be mapped. Formally,

Pot(i) =
∑

j∈Pot eq(i)

| j |.

In this case, Pot(C.1) = |IC.2| + |IC.3| = 3 and Pot(C.2) = |IC.2| = 1.
We are now ready to give the formula for the exposure coefficient E(i, 2[i, ∗])

with reference to the correct solution 2 = 2′ as follows:

E(i, 2[i, ∗]) = 1
|i|

·
∑

j∈Pot eq(i)

1
Pot(i)

·
∑

k
2[i, j ][k] · count(i)

count( j )
,

where the first factor models the uncertainty on the assignments of each mem-
ber of i to the hash values; the second factor is the number of members of
equivalence class i assigned to hash value in equivalence class j ; while the
third expresses, for each of those elements, the probability of guessing it right.

For instance, with respect to the correct matching, we have the follow-
ing entries in the table illustrated above: (C.1, IC.3) = 1, (C.1, IC.2) = 4,
(C.2, IC.3) = 1, (C.2, IC.2) = 0. A plaintext value in class C.1 can match with
any hash value. When it matches with a hash value in class IC.3, there is a
probability 1/3 of correctly identifying the value of a tuple, when it matches
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with a hash value in class IC.2, there is a probability 1/2 of guessing the right
value. Therefore, the exposure coefficient for values in equivalence class C.1 is

E(C.1, 21[C.1, ∗]) = 1
5

·
(

1 · 1
3

· 1
3

+ 4 · 1
3

· 1
2

)
.

Let us now consider the case of a solution 2 which is not the correct solution
with respect to class i. Since 2 is not the correct solution either too few or too
many elements of i might have been assigned to some j . If there are too many,
there is no way to map the exceeding ones. If there are too few, the missing
ones correspond to exceeding values mapped to some other classes. In either
case, we need to consider only the number of values that have been correctly
mapped, which corresponds to the ones in the correct solution 2′, the first case,
and to the ones in the current solution 2 in the second case. This gives us the
formula

E(i, 2[i, ∗])= 1
|i|

·
∑

j∈Pot eq(i)

1
Pot(i)

· min

{
∑

k
2[i, j ][k],

∑

k
2′[i, j ][k]

}

· count(i)
count( j )

.

As an example, consider the second matching illustrated above, where
(C.1, IC.3) = 3, (C.1, IC.2) = 2, (C.2, IC.3) = 0, (C.2, IC.2) = 1. Two of the three
plaintext values in class C.1 matched with the hash value in class IC.3 cannot
be assigned to the correct value, and the third plaintext value can be identified
with probability 1/3. Moreover, the attacker has probability 1/2 of correctly
identifying each plaintext value in C.1 assigned to a hash value in IC.2. In this
case, the exposure coefficient for values in equivalence class C.1 is

E(C.1, 22[C.1, ∗]) = 1
5

·
(

1 · 1
3

· 1
3

+ 2 · 1
3

· 1
2

)
.

Finally, we observe that the exposure coefficient E(i) of values in equivalence
class i can be obtained by averaging all the E(i, 2[i, ∗]) computed for distinct
values of 2[i, ∗]. Formally,

E(i) = 1
|V |

·
∑

{2[i,∗]∈V }
E(i, 2[i, ∗]),

where V = {21[i, ∗], . . . , 2n[i, ∗]} is the set (i.e., with elimination of duplicates)
of all possible solutions. For instance, the exposure coefficient for class C.1 is

E(C.1) = E(i, 21[C.1, ∗]) + E(i, 22[C.1, ∗]) = 1
5

· 1
2

·
(

7
9

+ 4
9

)
.

7. DB+DBK WITH DIRECT ENCRYPTION

We now consider the situation where the attacker knows both the encrypted
and the plaintext database. A typical scenario for this attack occurs when the
content owner switches from no encryption to the use of encryption with index-
ing on the outsourced database. A malicious user with access to the database
server may then be interested in reconstructing the correspondence between
the plaintext and index values, to monitor the evolution of the database and
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Fig. 8. Relation ENC ACCOUNTS1 (a) and the corresponding RCV-graph (b).

keep access to most of its content, independently of the strength of the encryp-
tion function adopted.

In this scenario, the attacker knows precisely the values’ distribution and the
relationships among them. Our model of the attack is based on the definition
of RCV-graphs that we introduce in the following.

7.1 The RCV-Graph

Given a table T with attributes A1, A2, . . . , An and tuples t1, t2, . . . , tm, we build
a three-colored undirected graph G = (V , E) called the RCV-graph (i.e., the
row–column-value-graph) as follows. The set of vertices V contains one vertex
for every attribute (all of color “column”), one vertex for every tuple (all of color
“row”), and one vertex for every distinct value in each of the attributes (all of
color “value”); if the same value appears in different attributes, a distinct vertex
is introduced for every attribute in which the value appears. The set of edges E is
built as follows. First, we add edges connecting each vertex representing a value
with the vertex representing the column in which the value appears. Second,
we add edges connecting each vertex representing a value with the vertices
representing tuples in which the value appears. To illustrate, consider table
ENC ACCOUNTS1 in Figure 2, which is repeated in Figure 8(a) for convenience,
restricted to attributes Customer and Balance. There are two vertices labeled
IC and IB for the attributes, seven vertices labeled t1 . . . t7 for the tuples, and
ten vertices labeled α . . . θ for the distinct values appearing in the attributes.
The addition of all the edges produces the RCV-graph depicted in Figure 8(b).

An important property is that the RCV-graph built starting from the plain-
text database is identical to the RCV-graph built starting from the encrypted
database, since the cryptographic function only realizes a biunivocal mapping
between plaintext and index values (in the relational model, the order of tuples,
and the order of attributes within a relation are irrelevant). The identification
of the correspondence between plaintext and index values requires then to es-
tablish a correspondence between the vertex labels and the plaintext values
discussed in the following section.
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7.2 RCV-Graph Automorphism

The identification of the correspondence between the labels on the graph
G = (V , E) and the plaintext values, when the plaintext database is known,
can exploit information on the topological structure of the data that permits a
more precise reconstruction than the one possible when the only information
available is the distribution of values in each attribute (as in Section 5). In the
example, it is possible to correctly identify the correspondence between label IC
and attribute Customer, label IB and attribute Balance, and it is also possible
to correctly identify the correspondence among all values but β and φ (t3, t7)
and γ and ε (t4, t6). For the remaining vertices, it is only possible to obtain a
probabilistic estimate of the correspondence.

While in the above example, we found the correspondence simply by inspect-
ing the graph, in the general case, the complexity of this search is related to
the number of automorphisms in the RCV-graph. An automorphism of a graph
is an isomorphism of the graph with itself. Formally, an automorphism of a
graph is a permutation + of the graph labels such that G(V , E) = G(V +, E)
(i.e., ∀e(vi, vj ) ∈ E, e(v+

i , vj
+) ∈ E). If the graph is colored (as in our case), nodes

with different color cannot be exchanged by the permutation. The identical per-
mutation trivially satisfies the relationship; then, at least one automorphism
exists for any graph. When the RCV-graph presents only the trivial automor-
phism, the correspondence between the vertex labels and the plaintext values
can be fully determined and the knowledge of the plaintext database permits a
full reconstruction of the correspondence between plaintext and index values.
When there are several automorphisms in the RCV-graph, the identification of
a vertex can be uncertain, as there are many alternative ways to reconstruct
the correspondence between the vertices. The RCV-graph shown in Figure 8(b)
presents four automorphisms, which we represent here by the permutations of
labels that characterize them. Each permutation is represented by a different
order of the symbols in the following sequences.

A1.{IC, IB, t1, t2, t3, t4, t5, t6, t7, α, β, γ , δ, ε, φ, µ, κ, η, θ}
A2.{IC, IB, t1, t2, t3, t6, t5, t4, t7, α, β, ε, δ, γ , φ, µ, κ, η, θ}
A3.{IC, IB, t1, t2, t7, t4, t5, t6, t3, α, φ, γ , δ, ε, β, µ, κ, η, θ}
A4.{IC, IB, t1, t2, t7, t6, t5, t4, t3, α, φ, ε, δ, γ , β, µ, κ, η, θ}

The four automorphisms derive from the choice in the order of the two ver-
tices sets (t4, γ , κ)-(t6, ε, κ) and (t3, β, η)-(t7, φ, η).

The number of automorphisms is not a good measure of the protection against
inference attacks, since situations with evidently different protection may be
characterized by the same number of automorphisms.

For instance, starting from 1000 distinct values we can consider two distinct
situations: (1) 900 values are fixed and 100 can interchange (100! = 9.3 × 10153

automorphisms), (2) there are 500 pairs of values that can interchange ((2!)500 =
3.3 × 10150 automorphisms); case (1) has a greater number of automorphisms,
but higher exposure index (0.9 for case (1), 0.5 for case (2)).

Also, the number of automorphisms increases exponentially with the size
of the graph and may reach considerable (and inexpressive) values even for
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graphs of limited size. A more precise measure of protection, which considers
the number of alternatives that are offered for the value of each label, is the
following. For each value in a tuple in the database, there is a given probabil-
ity of guessing it based on the knowledge of the plaintext database: if all the
RCV-graph automorphisms do not permute the corresponding vertex, there is
a probability (p = 1) of identifying its correct value. In general, if there are
K automorphisms for the RCV-graph and in k of them the label assigned to
vertex vi is correct, there is a probability pi = k/K of correctly identifying the
vertex (i.e., row and column vertices are ignored). Since the identification of
the correspondence is of interest only for the vertices representing attribute
values, the computation of the exposure coefficient is limited to these nodes.
The probability of guessing right a generic value can be estimated by comput-
ing the average on all the vertices of the probability pi of guessing each of the
vi correctly, thus obtaining the attribute exposure coefficient E(vi) =

∑m
i=1 pi/m,

where m is the number of vertices.
The automorphism problem has been extensively studied in the context of

graph theory, and many results can be directly applied to our context. First, the
set of automorphisms of a graph constitute a group (called the automorphism
group of the graph), which, for undirected graphs like these, can be described
by the coarsest equitable partition [McKay 1981] of the vertices, where each
element of the partition (each subset appearing in the partition) contains ver-
tices that can be substituted one for the other in an automorphism. The Nauty
algorithm that identifies the automorphism group of the graph [McKay 1981]
starts from a partition on the vertices that can be immediately derived group-
ing all the vertices with the same color and connected by the same number of
edges. This partition is then iteratively refined, and a concise representation
of all the automorphisms is produced. From the structure of the partition, it
derives that all the vertices appearing in the generic partition element Cj are
equivalently substitutable in all the automorphisms; from this observation, it
derives that the probability pi of a correct identification of a vertex vi ∈ Cj is
equal to the inverse of the cardinality of Cj , 1/ |Cj |.

Then, for the identification of the E , it is sufficient to identify the number of
elements in the equitable partition and the total number of attribute vertices
(i.e., it is not necessary to keep track of the number of vertices in each partition).
In fact, with |Cj | vertices in the partition element Cj , n elements in the equitable
partition and a total number m of vertices, the exposure coefficient E(T ) of the
table is

m∑

i=1

pi/m =
n∑

j=1

∑

vi∈Cj

pi/m =
n∑

j=1

∑

vi∈Cj

1/(|Cj | m) =
n∑

j=1

1/m = n/m. (2)

In the example, the equitable partition for attribute vertices is {(α)(β, φ)
(γ , ε)(δ)(µ)(η)(κ)(θ )}, which gives E = 8/10 = 4/5. As a check, the reader
can verify on the RCV-graph that the vertices appearing in singleton ele-
ments are associated with pi = 1 and those in the remaining elements are
associated with pi = 1/2. The average of pi on all the vertices is therefore
2/3.
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Fig. 9. A RCV representation of the plaintext table (a) and the corresponding encrypted table (b)
illustrated in Figures 2(a)–(c), respectively.

When the structure of the database is completely obscured, as it occurs when
all the attribute values appear once in the database, the E is minimal at 1/m.
The contribution of the knowledge of the plaintext database increases when the
structure of the RCV-graph derived from it can impose restrictions that limit
the number of options for a vertex, increasing the exposure coefficient.

8. DB+DBK WITH HASHING

In this scenario the attacker knows both the encrypted and plaintext databases.
Our abstract models for computing the exposure coefficient extend the RCV-
graph described in Section 7.

8.1 RCV Graphs and RCV Line Graphs

Given a table T with attributes A1, A2, . . . , An and tuples t1, t2, . . . , tm, we build
a three-colored undirected graph, named the RCV-graph, as described in Sec-
tion 7. As before, identifying the correct correspondence between plaintext and
hash values requires finding a matching between each vertex of the plaintext
RCV-graph (G A) and a vertex of the corresponding encrypted RCV-graph (GI ).
When collisions occur, the two graphs are not identical, as different vertices of
the G A may collapse to the same GI vertex. For instance, Figure 9 illustrates
the G A and GI for the tables in Figure 2(a) and Figure 2(c), respectively.

We can observe that the number of edges connecting row vertices to value
vertices in G A and GI is the same. Therefore, the problem can be viewed as
finding a correct matching between the edges of the G A and the edges of the GI .
Following this observation, we substitute both G A and GI , with the exclusion
of the column vertices, with their line graphs. The line graph L(G) of a graph G
is obtained by associating a vertex with each edge of the graph and connecting
two vertices with an edge if and only if the corresponding edges of G meet at
one or both endpoints [Whitney 1932]. Figure 10 illustrates the line graphs
corresponding to the G A and GI in Figure 9.
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Fig. 10. L(G A) (a) and L(GI ) (b) of the graphs illustrated in Figure 9.

The problem of finding a mapping between each vertex of L(G A) and each
vertex of L(GI ) is thus a graph–subgraph monomorphism, that is, the problem
of finding whether L(G A) is a (partial, or not-induced) subgraph of L(GI ). It is
easy to verify that each graph monomorphism between these line graphs cor-
responds to a feasible mapping between the vertices of the RCV-graphs. Each
value vertex of a RCV-graph with degree k corresponds to a clique of cardinality
k in the corresponding line graph. Then we can assign a label i to each vertex in
a clique corresponding to the plaintext value i. Each clique in the L(G A) has to
be mapped in a clique in the L(GI ) with greater than or equal cardinality (i.e.,
vertices in L(G A) labeled with the same plaintext value have to be matched with
vertices in L(GI ) labeled with the same hash value). This corresponds to map-
ping a set of plaintext value vertices v1, . . . , vk in a hash value vertex j whose
degree is the sum of the degrees of v1, . . . , vk . The number of L(G A) and L(GI )
vertices is the same, so each plaintext value has to be matched with a hash value
in a feasible graph monomorphism. Furthermore, the order of the vertices in the
graph monomorphism describes a unique order between the edges of the RCV-
graphs. Hence, each graph monomorphism corresponds to exactly one matching
between the G A and the GI . The converse is also true: each feasible matching
between the G A and the GI has a corresponding graph monomorphism between
the L(G A) and the L(GI ) in which the cliques representing each plaintext value
are mapped in the clique representing the corresponding hash value.

The presence of apparently identical tuples in the encrypted table (tuples
with the same value for every indexing attribute), such as β, κ, represents a
symmetry condition. Also in this case, the number of symmetric solutions grows
very quickly, making it hard for a search algorithm to enumerate all the feasible
matchings. This problem can be handled in our line graph representation of
the tables as follows. First, we can establish an order between the tuples in
the plaintext table, leaving the uncertainty about the order of the tuples to the
corresponding encrypted table. This can be done by representing the plaintext
table with a directed graph: each edge in the L(G A) is replaced by an arc,
directed toward vertices belonging to previous tuples. Then, we can establish
an order between the identical tuples in the L(GI ) as before, by substituting
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Fig. 11. Directed L(G A) (a) and L(GI ) (b) corresponding to the line graphs in Figure 10.

each edge connecting the values of these tuples in the same column with an arc,
directed toward the previous tuples. For instance, with respect to Figure 10(b),
the edges connecting vertices s3-δ and s7-δ and vertices s3-θ s7-θ with two arcs.
The remaining edges are replaced by two arcs, connecting the same pair of
nodes, with opposite directions, except for the edges incident to column vertices,
that can be replaced by an arc directed toward the column vertex. Both line
graphs may be changed according to the above criterion, and the resulting
directed graphs are reported in Figure 11.

Our efficient enumeration technique (Section 8.3) allows us to efficiently
evaluate the exposure corresponding to specific solutions. Namely, whenever
a monomorphism between the line graphs is found, a matching between each
value vi in the plaintext table and a value vj in the encrypted table can be
identified just by looking at the labels of vertices. As before, let count(vi) and
count(vj ) be the number of occurrences of each plaintext value vi and each hash
value vj , respectively. If the matching is correct, an attacker has probability
count(vi)/count(vj ) of identifying the plaintext value vi of a tuple assigned with
a hash value vj . Let ki be the number of different hash values to which plaintext
value i can be assigned in a matching: the probability of guessing the right
plaintext–hash value correspondence is 1/ki. The exposure of each plaintext
value i is

E(vi) = 1
ki

count(vi)
count(vj )

.

Then, we define the attribute exposure coefficient as the average of these values

E =

∑
i∈I

E(vi)

|I |
,

where I is the set of the plaintext values. When there are no collisions, count(vi) /
count(vj ) = 1 and therefore the E reduces to the expression reported in Section 7.
On the opposite, if we have m columns and n plaintext values in each column,
when all the plaintext values of each column collide in the same hashed value,
each E(vi) value is count(vi) / (n · m).
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8.2 RCV Line Graphs Monomorphism

There is a theoretical difference between graph isomorphism and graph–
subgraph isomorphism: neither a polynomial time algorithm is known for the
graph isomorphism problem, nor the problem is known to be NP-complete. On
the contrary, the graph–subgraph isomorphism was proved to be NP-complete
for general graphs [Garey and Johnson 1979]. The graph–subgraph isomor-
phism problem is polynomial-time solvable for certain classes of graphs (e.g.,
planar graphs, trees, or bounded degree graphs), but our L(G A) and L(GI ) do
not have such a nice structure. When only one column is involved in the match-
ing, the problem reduces to a multiple subset sum problem that is known to be
NP-hard (see Section 6). Several enumeration (exponential time) algorithms for
the graph–subgraph isomorphism problem have been proposed: Ullman [1976]
devised a widely known enumeration method, which required O(N !N 3) time
and O(N 3) space. More recently, Cordella et al. [1999, 2001] presented an al-
gorithm, called VF2, that reduced the space complexity to O(N ) and the time
complexity to O(N !N ). Their method allows to also manage directed graphs and
attribute-relational graphs (ARGs), that is, graphs with semantical attributes
associated with each vertex and edge. The matching between vertex and edges
with incompatible attributes is not considered during the enumeration process.
Also, the notion of incompatibility can be customized via user-defined compar-
ing functions. Hence, each vertex of our linear graphs corresponding to an edge
connecting a row vertex with a value vertex in the corresponding RCV-graphs
can be labeled with color V (value), each column vertex can be labeled with color
C (column), each arc connecting vertices in the same column can be labeled with
color V, each arc connecting vertices in different columns can be labeled with
color T (tuple), and each arc connecting V vertices with C vertices can be labeled
with color C.

8.3 Efficiently Pruning the Search Tree Through Feasibility Conditions

Although our linear graphs do not have special properties, the corresponding
RCV-graphs have a particular structure. They have (2n + 1) layers: there is a
layer for the vertices of color T; n layers for the vertices with color V, correspond-
ing to values of the same column; and n layers made by each vertex labeled with
color C. Furthermore, each V layer is only connected to the T layer and the cor-
responding C vertex. By removing the T layer, all the topological information
about the structure of the database is lost. Therefore, the problem disaggre-
gates in n2 independent multiple subset sum problems (all the pairs between
plaintext and encrypted columns have to be checked), that can be solved with
the algorithm described in Figure 7. The idea is to match vertices of G A with
vertices of GI just by looking at their degree: the sum of the degrees of a set
of vertices i1, i2, . . . , ik in G A associated with the same vertex j in GI has to be
equal to the degree of j .

The solutions of these multiple subset sum problems can be computed before
starting the enumeration process for identifying graph monomorphisms. Let
Sj be the set of plaintext values v1, v2, . . . , vk assigned to the hash value vj
in some solution of the multiple subset sum problems. An additional semantic
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Fig. 12. Abstract models supporting computation of exposure in the four attack scenarios.

attribute i is added to each vertex in the L(G A), where i is the vertex label
defined in Section 8.1. Analogously, an attribute Sj is added to each vertex
in the L(GI ) marked with label j . A vertex labeled i of L(G A) is compatible
with a vertex labeled Sj of L(GI ) only if i ∈ Sj . This feasibility test greatly
reduces the computation time required to enumerate graph monomorphisms,
supporting experimental quantification of exposure for specific solutions.

9. EXPERIMENTAL RESULTS

The abstract models presented above, and summarized in Figure 12, can be used
to obtain an indication of the exposure that characterizes generic databases,
depending on the information available to the attacker and on the use of hash-
ing. The results of three families of experiments are presented, corresponding
to the scenarios considered, respectively, in Section 6, Section 7, and Section 8.
The scenario “Freq+DBk with direct encryption” presented in Section 5 has not
been the subject of experiments, since it is not interesting from an algorithmic
point of view (the behavior of an arbitrary database in this scenario can be pre-
cisely obtained by the analysis of the cardinality of the attribute values), and
its behavior is dominated by the results, presented in Section 9.1, of the more
complex scenario of Section 6.

9.1 Freq+DBK with Hashing

We used an implementation in C of the algorithm for the subset-sum prob-
lem [Pisinger 1995] presented in Section 6. Other routines needed by the algo-
rithm used for these experiments were implemented in ANSI C.

For the experimental analysis, we generated a series of random database
instances considering two features of each database: the number N of dis-
tinct plaintext values and the collision factor cf , defined as the ratio N

M be-
tween the number N of plaintext values and the number M of hash values.
The collision factor shows how many values, on average, collide on the same
hash value, which represents the expected increase in the size of the encrypted
results.

In a first set of experiments, databases were randomly generated whose
number of occurrences of each plaintext value followed a Zipf distribution.
Databases have been considered with 15, 20, 25, and 40 plaintext values. The
graph in Figure 13 represents the E for these databases as the collision factor
increases. At the right-hand border of the graph, signs indicate the value 1/N ,
that is, the optimal exposure of each database, occurring, for example, when
all plaintext values collide on the same hash value. The E decreases from a
value near 0.4 when no collision occurs to a value near 0.1 for a collision factor
near to 3.0. A value near 0.1 is certainly adequate in this context, since the
optimal is not very far.
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Fig. 13. Freq+DBk scenario: E for databases whose number of occurrences of each value follows
a Zipf distribution.

As a worst-case analysis, a second set of experiments was run, randomly
generating databases with about 1200 tuples, where the number of occurrences
fi for each plaintext value was drawn as a random integer from a uniform
distribution in R = [1, . . . , r].

Databases with a high N
r ratio show very low exposure values even for a colli-

sion factor 1.0 (no collisions), due to the contribution given by large equivalence
classes between plaintext values. To evaluate the protection from exposure in
the most difficult scenario, the experiments considered instances with a ratio
N
r less than or equal to 1.0. These instances have, in general, singleton equiva-

lence classes between plaintext values. Figure 14 presents a graph describing
the E for these databases for increasing values of the collision factor. As before,
the lowest exposure value 1/N appears on the right-hand border of the graph.
The exposure of the database decreases as the ratio N/r increases (in fact, to
high N/r values correspond to a high number of plaintext values in the same
equivalence class). A collision factor of about 1.6 and 2.2 is sufficient to come
close to the lowest exposure coefficient for databases with 50 and 35 plaintext
values, respectively, while a higher collision factor is required for the databases
with 20 values and number of occurrences in a wider range.

The results support the claim that a relatively modest increase in the cost
of query execution, due to the use of a hash index with a low collision factor,
produces a significant benefit in terms of protection from inference attacks.

The fact that the exposure is relatively high in the experiments when hashing
is not used (c f = 1) mostly depends on the fact that the experiments have
used databases characterized by a distribution of attribute values difficult to
protect (this observation is confirmed by the low exposure that characterizes
in Figure 15 the databases where only two indexes are used). Then, a possible
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Fig. 14. Freq+DBk scenario: E for databases whose number of occurrences of each value follows
a uniform distribution.

strategy for the Freq+DBk scenario may first evaluate the exposure coefficient
in the specific database using the immediate formula in Section 6; if the result is
above a chosen threshold, the database owner may switch to the use of a hashing
function with a limited collision factor, always able to effectively increase the
protection from inference attacks where the attacker knows the distribution of
attribute values.

9.2 DB+DBK with Direct Encryption

In this section we present the results of the experiments on the scenario where
the attacker knows both the encrypted and the plaintext database. In Sec-
tion 9.3 we shall consider the scenario with hashing at variable collision factor.
Since direct encryption corresponds to the use of hashing with collision fac-
tor equal to 1, the results of this section could be considered redundant. The
reason for carrying out a separate experiment on direct encryption is twofold.
First, the greater efficiency allows us to analyze the behavior of a relatively
complex database, illustrating the variation of exposure in this scenario with
the increase in database size and with the variation in the number of indexed
attributes. Second, it allows us to show the application of a tool specific for this
scenario, which is much more efficient than the tool used for the analysis in
Section 9.3. To optimize the exploration of a large database size, we considered
in the experiments only one database instance following the Zipf distribution.

The tool we implemented for the experiments of this section takes as input a
relational database and builds the RCV-graph that models it, with the construc-
tion presented in Section 7. The tool then invokes the Nauty algorithm [McKay
1981] on the RCV-graph, which is able to compute efficiently the automorphism
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Fig. 15. DB+DBk with direct encryption scenario: Tabular representation of the experimental
results (a) and their graphical representation (b) (curve labels refer to the initial of the attributes).

group (around 15 min on a 700 MHz Pentium III PC running Linux, for the
greatest RCV-graph derived from a 2000 4-tuple table containing 2262 distinct
values). The output of the program is then analyzed to reconstruct the equi-
table partition that permits to determine the attribute exposure coefficient of
the table.

In the experiments we used a table of four attributes A, B, C, and D and
we applied the tool using a progressively greater number of tuples, up to 2000
tuples. We considered all the combinations of attributes containing attribute
A; this choice was due to the fact that the analysis is meaningful only if at
least two attributes are present in the table (otherwise, no correlation among
attributes can be observed) and it was useful to keep a common attribute in
all the experiments. The results appear in tabular form in Figure 15(a) and
graphically in Figure 15(b).
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The main result of these experiments is that the number of attributes used for
the index has a great impact on the attribute exposure. With only two attributes,
exposure coefficients tend to be quite low; when all the four attributes are used
as index, the exposure is considerable.

Another question answered by the experiments is how the exposure evolves
with an increase in the database size. What we observe is that the exposure
decreases with the size of the database. The explanation is that as the number of
tuples increases, a greater number of values become characterized by a distinct
profile and are identifiable. At the same time, the new tuples introduce new
values that are infrequent and indistinguishable, and this component prevails
over the former.

Also, the increase in size of the database will generally make the task of the
attacker computationally more expensive.

9.3 DB+DBk with Hashing

For this experimentation, the VFLib2.0 C++ library [Foggia 2001] was used,
implementing the VF2 and other algorithms for graph morphisms. This library
is available on the Web, and it was used to develop a program that computes
the exposure coefficient when the DB+DBk scenario with hashing is analyzed.
The experiments in Section 9.2 show that the exposure coefficient decreases as
the number of tuples in the database increases; the following analysis for small
databases can be considered as a worst-case scenario.

Two set of tests have been run. The first test analyzed the E for databases
where the number of occurrences of each plaintext value follows the Zipf distri-
bution. Figure 16 reports a graph representing the exposure E for a database
with 12 plaintext values (about 30 tuples), when an increasing number of
columns is considered. The lower bound on the exposure value 1/(N K ), where
N is the number of distinct plaintext values for each column and K is the num-
ber of columns, is indicated to the right-hand border of the graph. The E in all
cases halves for a collision factor of about 3.0. As discussed before, the expo-
sure grows as the number of considered columns increases, due to the larger
amount of topological information available to the attacker. The E is still far
from the lowest exposure value, but for small databases the correct matching
between plaintext and encrypted indexes can always be identified, unless all
the plaintext values collide in the same hash value.

The second test analyzed databases where the number of occurrences of
each plaintext value follows a uniform distribution (Figure 17). Two kinds of
databases have been considered: an instance with 8 plaintext values and a
range [1..5] for the number of occurrences and an instance with 12 plaintext
values and a range [1..4]. For both databases, the cases in which two or three
columns are available to the attacker are considered. As before, these instances
represent highly exposed databases. Although the exposure is still high when
four columns are considered, the E is near to the lowest possible value when
only two columns are available to the attacker.

The experiments show that the use of several index columns continues to
have a significant impact on the exposure index. The use of hashing is able to
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Fig. 16. DB+DBk with hashing scenario: E for databases whose number of occurrences of each
value follows a Zipf distribution.

Fig. 17. DB+DBk with hashing scenario: E for databases whose number of occurrences of each
value follows a uniform distribution.
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reduce considerably the exposure, but relatively high values persist, even with
collision factors that in the Freq+DBk scenario are able to protect the database
from inference.

We conclude with an observation on the impact of database updates. The
experiments have considered a static database and the results of the analysis
permit to evaluate the collision factor that is adequate for a specific database.
As the database evolves the results of the analysis may have to be reconsidered.
In this situation, it should be appropriate to use an approach similar to the one
typically adopted for the physical design of databases, where a representative
database situation is used as a basis for the identification of the physical de-
sign, and a monitoring activity is executed that identifies when the changes to
the database go beyond a given threshold, requiring a reconsideration of the
physical design choices.

10. CONCLUSIONS

In this paper, we proposed a solution to the problem of secure database out-
sourcing on remote servers by providing a hash-based method for database
encryption suitable for selection queries. Also, we gave a quantitative model
for evaluating our method’s vulnerability in different scenarios, showing that
even straightforward direct encryption can provide an adequate level of protec-
tion against inference attacks, as long as a limited number of index attributes
are used. To achieve a higher degree of protection against inference, it is con-
venient to use a hash function to encode index values. Indeed, our experiments
show that even a hash function with a low collision factor, that is, with a lim-
ited impact on the size of the result set, can substantially decrease exposure to
inference attacks as measured by a suitable exposure index. Our quantitative
approach paves the way to the definition of a query cost model, capable of esti-
mating the performance impact of the choice of attributes to be indexed and of
the collision factors of their associated hash functions. Such a cost model should
use as input a representative description of the set of queries that the server will
have to manage, returning as output a quantitative evaluation of the decrease
in performance introduced by the protection measures for that specific query
set. The database designer will thus be able to compare this performance degra-
dation to the degree of protection required for the database. When physically
designing databases, database designers usually iteratively apply a cost model
of the estimated workload, recalibrating physical design parameters until per-
formance reaches a satisfactory level. Much in the same way, we expect that
the database designer will use a query cost model to interact with the system
in order to iteratively identify, the configuration that best balances the im-
plicit protection requirements and database performance. Ideally, the database
designer could be assisted by a more complex program, which will integrate
performance and exposure quantitative models and use them to identify a so-
lution optimizing overall system behavior. While such a system looks feasible in
principle, we believe that in many environments characterized by complex secu-
rity and performance requirements an interactive solution keeping the human
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designer “in the loop” would be preferable. Another line of research stemming
from this paper is defining of the set of queries that can efficiently be performed
in the outsourced database setting. A well-known problem of hashing indexes
is that they do not efficiently support execution of range queries, that is, queries
that select tuples based on an interval of attribute values. Alternative index-
ing structures have been proposed in Hacigümüs et al. [2002a] and Damiani
et al. [2003] that are able to support interval queries. The support for range
queries presented in Hacigümüs et al. [2002a] unfortunately has a significant
impact on inference exposure: due to the fact that the same index is associated
with all the attribute values belonging to an interval, the number of possible
assignments of attribute values to indexes is greatly reduced, permitting an
easier reconstruction of the correspondence between values. It would be cer-
tainly interesting to consider the concrete impact that these techniques would
have on the exposure index, extending the approach used in this paper. The
problem with the approach using B+-trees presented in Damiani et al. [2003]
is the deterioration in performance that it can introduce, due to need to execute
of a series of queries to navigate the B+-tree in order to identify the tuples
belonging to the interval. An alternative client-based solution was presented
in Damiani et al. [2004]. A final consideration can be made on the defense
against inference attacks where the attacker controls the encrypted database
and knows plaintext updates that are applied to it. For instance, this may hap-
pen when the attacker is able to add a specific record to the encrypted database
(e.g., an attacker working at the organization where an outsourced database
of bank accounts is stored could open a bank account, thus triggering a known
update the outsourced database) or when the attacker knows that the data
owner will execute a specific update at a given moment. While in this paper
we only took static analysis into account, it must be underlined that dynamic
attacks could possibly rely on additional information that could facilitate the
reconstruction of the correspondence between encrypted and cleartext values.
A strategy that can be used to mitigate this attack is inserting random delays
between queries, evenly distribute the database load, and even introducing a
number of fake queries in order to hide the “real” activities of the database.
This line of research is another interesting extension of our work.
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